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Abstract Streaming model transformations represent a
novel class of transformations to manipulate models whose
elements are continuously produced or modified in high vol-
ume and with rapid rate of change. Executing streaming
transformations requires efficient techniques to recognize
activated transformation rules over a live model and a poten-
tially infinite stream of events. In this paper, we propose
foundations of streaming model transformations by innov-
atively integrating incremental model query, complex event
processing (CEP) and reactive (event-driven) transformation
techniques. Complex event processing allows to identify rel-
evant patterns and sequences of events over an event stream.
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Our approach enables event streams to includemodel change
events which are automatically and continuously populated
by incremental model queries. Furthermore, a reactive rule
engine carries out transformations on identified complex
event patterns.We provide an integrated domain-specific lan-
guage with precise semantics for capturing complex event
patterns and streaming transformations together with an exe-
cution engine, all of which is now part of theViatra reactive
transformation framework.We demonstrate the feasibility of
our approachwith twocase studies: one in an advancedmodel
engineering workflow; and one in the context of on-the-fly
gesture recognition.
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1 Introduction

Live models in smart cyber-physical systems Smart Cyber-
Physical Systems [56,57] are open, interconnected and
highly distributed complex systems expected to consist of 50
billion smart objects and devices by 2020 [17], which inte-
grate simple sensors and actuators to the Internet-of-Things
(IoT) [73] to exploit the user interface of mobile devices and
the computational power of cloud-based infrastructures. In
many cases, they also connect traditional critical embedded
systems where a failure may result in major financial loss,
severe damage or even casualties.

Management of such smart systems frequently necessi-
tates soft real-time processing, and it may rely upon a closed
control loop which observes data reported by sensors of the
system, and interacts with actuators based upon some control
logic. Typical applications following such a scenario include
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run-time reconfiguration and optimization [19] of the under-
lying system, knowledge maintenance in online machine
learning [38], distributed reasoning [41], etc.

Many distributed systems in IoT implement the control
logic over a stream of events which may offer extreme scala-
bility in a distributed environment with a massive number
of nodes. Complex event processing (CEP) [37,58] offer
well-founded techniques to capture critical event sequences
observed on the event streams within a given time window
which require immediate reaction. The event stream is con-
sidered as an external component for the CEP engine, which
is loosely connected to the event sources, thus adapting a
CEP engine to consume model changes as events require
significant manual programming effort [62].

However, a smart CPS also needs to autonomously per-
ceive its operational context and adapt to changes in an open,
heterogeneous anddistributed environment. For that purpose,
the current snapshot of the system and its operational con-
text can be formally captured as a live model (also referred as
models@runtime [15]) which continuously gets updated to
reflect relevant changes in the underlying real system. Fur-
thermore, operations executed on this live model may have
immediate and direct effect on the running system.

Toward streaming transformations over live models Scala-
bility of models, queries and transformations has become a
key challenge in model-driven engineering [55] to handle
complex scenarios of industrial domains of critical embed-
ded systems like automotive or avionics. Efficient graph
reasoning [40] techniques (based on constraint or query
languages [61,70,74]) assist in identifying critical model
changes while reactions are regularly defined by rule-based
techniques (such as graph transformation [12]). However, the
same techniques fail to identify complex sequences of model
changes.

The maintenance and manipulation of large models also
initiated to come up with novel classes of model transfor-
mations. Change-driven transformations [14] consume or
produce changes of source and target models as their input
or output models, to enable transformations over partially
materialized models and to reduce the amount of traceabil-
ity information required to be stored in the model. Sánchez
Cuadrado and de Lara define streaming transformations as
a “special kind of transformation in which the whole input
model is not completely available at the beginning of the
transformation, but it is continuously generated“ [65]. An
additional class of streaming transformations aims to tackle
very large models by feeding a transformation process incre-
mentally (keeping only a part of the model in memory at any
time).

However, in the context of smart CPS, live models may
evolve at a very fast rate, or they may not be fully material-
ized, i.e., only a part of the live model is stored in memory

while changes in other component are reported as events.
For example, the optical sensors of a CPS may search for
a specific pattern over a continuous stream of images, or a
runtime monitor (with small memory footprint) may look
for a violation of a safety property with temporal constraints.
Applying graph reasoning and transformation techniques in
the context of live models and IoT applications is still in an
early research phase [41,60].

Contributions In [27], we identified a novel class of stream-
ing transformations for live models where the models them-
selves are not necessarily large or infinite, but they change
or evolve at a very fast rate (for instance, 25 times per sec-
ond), and it is the stream of model changes that requires
efficient processing. In this paper, we innovatively combine
complex event processing techniques with live model queries
and transformations where

(1) changes of a live model at different (but user-defined)
level of granularity can be identified by changes of a
query result set and then published as atomic events to
one or more event streams similarly to external stimuli;

(2) relevant event sequences are identified by adapting com-
plex event processing (CEP) techniques [37,58];

(3) transformation rules enable to react to such complex
event sequences bymanipulating the livemodels or send-
ing further events.

Our technical contributions include

A a high-level integrated domain-specific language for cap-
turing complex event sequences over model changes
defined by queries and specifying reactions as stream-
ing transformations;

B precise foundations of this event processing DSL includ-
ing syntax and semantics (both formal algebraic and
executable);

C a complex event processing engine tightly integrated
into the Viatra reactive and incremental transforma-
tion framework [13];

D initial scalability measurements to assess the perfor-
mance of the framework in the context of live models
for gesture recognition; and

E a new case study of an advanced model-driven engineer-
ing tooling workflow in the context of CPS.

While the technical depth of presentation increased in gen-
eral wrt. the earlier version [27], contributions (B) and (E)
are completely novel in the current paper.

The main conceptual added value of our work is the seam-
less and tight integration between a reactive MT engine and
a CEP engine to handle model changes as events and the
other way around. As a result, graph reasoning and complex
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event processing techniques can be simultaneously used in
the context of live models without additional programming
and integration efforts. Furthermore, introducing compound
changes as atomic events significantly reduces the complex-
ity of complex event patterns and their checking automata
compared to a solution which relies only on a CEP engine.

Structure of the paper In Sect. 2, we give a brief overview
on our approach. Section 3 introduces a running example
on complex event-driven live model synchronization aided
by design space exploration. Section 4 defines the static
structure and the formal semantics of the domain-specific
language supporting our approach. Section 5 presents the
executable semantics of the DSL. In Sect. 6, we elaborate on
the case study, using our proposed DSL and architecture. In
Sect.7, we present a case study of gesture recognition over
live models and carry out the performance evaluation of the
approach. Finally, related approaches and tools are described
in Sects. 8 and 9 concludes our paper.

2 Overview of the Approach

Wepropose a novel class of streamingmodel transformations
where (1) changes of live models (representing the state of
the system) are published as atomic events by an incremental
query engine, (2) complex event sequences can be observed
over an event stream and (3) reactions to such complex events
can be executed by a reactive transformation engine.

As a terminology, changes affecting the structure of a
model (e.g., adding, removing or changing model elements)
are called elementary structural changes. When relevant ele-
mentary changes of the live model are aggregated into a
(compound) change which is observed by an appropriate
change pattern, change events are generated in an event
stream and offered to a complex event processing engine.
Based on the granularity of (i) the observed model changes
and (ii) the events mediating that change information to the
processing module, we distinguish four main scenarios (see
Fig. 1).

2.1 Elementary Structural Changes

In this base case, model changes are elementary mod-
ifications (e.g., modifying an attribute of an object, or
removing a reference between two objects), while change
events can be elementary notifications sent by the model
management framework. Notable frameworks supporting
elementary structural changes include the Eclipse Modeling
Framework (EMF) [32] together with notifiers/adapters via
the EMF Notification API or the Kevoree Modeling Frame-
work (KMF) [54].

Fig. 1 Structural changes versus events

2.2 From Elementary to Compound Changes

Compound structural changes aggregatemultiple elementary
changes between two states (snapshots) of the model (called
the pre-state and the post-state). The techniques of change-
driven transformations (CDT) [14]were proposed to identify
compound structural changes by using change patterns [14,
18,76].

As their main characteristics, change patterns observe the
delta between the pre-state and the post-state regardless of
the actual trajectory between those states. Thus, if multi-
ple different sequences of elementary changes can lead to
the same compound change, CDT is unable to distinguish
between those sequences but identify the same compound
(aggregate) change.

2.3 From Atomic to Complex Events

To avoid overloading the term “change,” we define an event
(instance) as a record of significant information on some
internal modification in a system or some external change
observed in the context of the system at a given point in time
(as minor adaption of the definition in [63]).

Concerning the granularity of events, we distinguish
between atomic and complex events.Complex event process-
ing (CEP) [58] techniques provide solid foundations on how
to model and evaluate logical structures of atomic event
instances in order to detect (sequences or patterns of) com-
plex events. Atomic event instances can be directly observed
on an event stream. Complex event instances are constituted
from logic structures of multiple atomic event instances, and
thus, they cannot be directly observed. Instead, their presence
is deduced by processing the atomic event instances.

Complex event processingmeansmatching event instances
against previously defined event patterns. Event patterns
are abstractions of event instances, and they are primarily
characterized by the type and potentially, some extra parame-
ters. Event instances are further augmented by a timestamp,
which defines an ordering over relation over a set events to
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Table 1 Advantages and shortcomings of CDT and CEP techniques

CDT CEP

Advantages Efficiently
captures
change deltas
between two
states

Efficiently
captures
sequences

Shortcoming Fails to
distinguish
between
sequences

Fails to
efficiently
abstract from
actual sequence
of events

decide in what order events follow each other1 Additionally,
timestamps also enable calculating the length of time win-
dows the complex events occur within.

Complex event patterns are defined using an event pattern
language and then evaluated using an event processing alge-
bra which offers common operators (followed by, and/or,
multiplicity, etc.).

Standard CEP techniques do not restrict what kind of
information is present in the event stream, but populating
the event stream can be problematic in case of live models
since atomic events can only carry information about ele-
mentarymodel changes, but about not compound (aggregate)
changes.

The automated handling of compound model changes as
atomic events of the event stream would result in (i) more
simple event pattern specification and (ii) less event instances
on the event stream to be processed by the CEP engine.

2.4 Complex Patterns of Compound Changes

Themain contribution of our work is an approach that allows
simultaneous reasoning over complex event sequences, and
graphs by incorporating both elementary and compound
structural changes as events. Incremental model queries are
reused to identify relevant compound structural changes and
derive atomic events for an event stream which is then
processed by CEP techniques. Finally, reactions observed
complex events can be specified by reactive model transfor-
mation techniques. As summarized in Table 1, our approach
gains advantage from (i) CDT techniques efficiently abstract-
ing higher-level model changes into events and (ii) CEP
techniques that efficiently identify sequences and temporal
relations among change events.

Despite the variety of available CEP platforms and
approaches, none of them supports such a deep integration
with state-of-the-artmodelmanagement and graph reasoning

1 In this paper, we do not investigate the hypothetical special case of two
events having the same timestamp. In this case, two events are ordered
randomly.

techniques (see Sect. 8 for detailed comparison). In a prelim-
inary study [26], significant programming and integration
overhead was required (both for specification and execu-
tion) to use an external CEP platform (Esper) for processing
events in the context of a model transformation engine. To
overcome integration problems, we developed a prototype
tool with unified execution semantics of event processing
and model transformations that became part of the Viatra2

open-source Eclipse project, which offers an event-driven
and reactive model transformation platform.

2.5 Architecture

Figure 2 presents the conceptual architecture of the frame-
work. TheModel is continuously queried by an incremental
Query engine with queries defined using a Query language.
Incremental query evaluation enables to efficiently obtain the
match sets of a query and to continuously track changes of
the model. The match set of a query contains the set of model
element tuples that satisfy the query condition.

These data are wrapped into atomic change events and
published on an Event stream accessible for each compo-
nent in our architecture. The Event stream is continuously
processedby theCEPengineby evaluating the complex event
patterns based on the processed atomic events.

Then, the Model transformation (MT) engine triggers
reactions upon successfully matched event patterns, which
includes direct manipulation of the model or publishing
events to the stream. While the Query engine and the MT
engine typically produces events on the stream, while the
CEP engine both consumes and produces events

Complex event patterns are defined by the Event process-
ing language, which enables to generate Java classes to
represent (i) complex and atomic event patterns and (ii)
atomic event classes. The latter artifacts are instantiated by
event producers and define the finite language of automati-
cally generated event types. The Event processing language
reuses the queries defined using theQuery language to enable
referring directly to (compound) model change events; and
(ii) reactive transformations defined using the Model trans-
formation (MT) language.

2.6 Architecture-Level Challenges

Although we support our approach with a dedicated tooling
(presented in Sect. 6 while elaborating on the case study),
one can possibly implement the architecture of Fig. 2 by
making alternative technological choices for specific compo-
nents, e.g., using other query, model transformation or CEP
languages and engines.

2 https://www.eclipse.org/viatra/.
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Fig. 2 Conceptual overview of the approach with our key contributions highlighted

In the following, we discuss the main challenges that need
to be addressed to efficiently support the architecture pre-
sented in this paper.

Graph reasoning. A key idea in our approach is to uni-
formly map both elementary and compound changes of the
underlying model into atomic events. Our paper uses an effi-
cient incremental graph pattern matcher for that purpose, but
in certain cases, similar results can be achieved by using
a CEP engine only, where (1) atomic events carry informa-
tion about elementarymodel changes only and (2) compound
model changes are identified by the CEP engine by formulat-
ing them as complex event patterns instead of graph patterns.
However, graph patterns offer a more expressive formalism
for capturing structural conditions for model changes.

Coordination of modeling languages. Our streaming trans-
formation approach requires at least two languages: one for
complex event processing andone formodel transformations.
(In addition, our prototype tooling also uses a graph query
language.) This clear separation of concerns raises the need
for proper coordination of employed languages in order to

– allow complex event patterns and model transformations
to reference each other;

– allow parameterized execution of model transformations
based on matched complex event patterns;

– ensure the type safety of user-defined streaming transfor-
mation rules.

This necessitates an advanced and integrated modeling
environment with rich editor support and automatic source
code generation from high-level models.

Execution challenges. For efficient execution, the following
challenges need to be addressed:

– propagation of model changes to the CEP engine;
– rule-based execution semantics for triggering model
transformations based on matched complex event pat-
terns;

– all of this in a potentially distributed way.

While our prototype uses the Viatra Event-driven vir-
tual machine [13] as the common execution platform, where
semantics is defined by traces of the underlying automata,
the above tasks can be addressed by other implementations
as well.

3 Case study

Our motivating scenario is a synchronization problem over
live models [15], which is a pertinent example of graph rea-
soning over non-materialized models. The synchronization
process is augmented with live validation and design space
exploration-based quick fix generation for invalid model
states. The example is motivated by [42] and [50].

The source domain model describes a generic infrastruc-
ture for cyber-physical systems (CPS) where applications
(services) are dynamically allocated to connected hosts. The
target domain model represents the system deployment con-
figuration with stateful applications deployed on hosts. We
aim to derive a deployment model from the CPS model, and
then, incremental model transformations are used to propa-
gate changes in the CPS model to the deployment model.

As the sourcemodel undergoes changes (introducedby the
user, for example), the CPSmodel might become invalid. For
example, an invalid state can be reached if a model element
in the CPS model is created, but its mandatory attributes
are not set yet. In such cases, the automated synchronization
between the CPS and the deployment model cannot proceed
and manual guidance is required.
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Fig. 3 Conceptual overview of the case study

To identify invalid model states, well-formedness con-
straints are evaluated continuously over the source model,
i.e., on every change. Events notifying a change in the valid-
ity (i.e., when a valid model becomes invalid or the other way
round) are published on an event stream, constituting there-
fore an infinite streaming model (representing the prevailing
validation state of the underlying source model).

Should an invalid state be identified, quick fix sugges-
tions are generated using design space exploration (DSE)
techniques. Subsequently, the quick fixes are provided to the
user in the form of a model transformation sequence to aid
the process of recovering from the invalid state. The concept
is illustrated in Fig. 3.

Meaningful units of change in the source model can be
achieved typically by non-atomic changes. For example,
adding a new model element and subsequently setting a
required reference to another model element. Such a com-
pound change can lead to an eventual validity, although
during the intermediate atomic steps the model can be in
an invalid state. As an advanced scenario, we aim to intro-
duce inconsistency tolerance to the process, i.e., define rules
over the streaming validation model which will trigger quick
fix generation. Tolerance rules are depicted as complex event
patterns and quick fixes are generated only on matches of
these specific patterns. Such a pattern can be, for example,
“the model being in an invalid state during five consecu-
tive atomic changes.” Tolerance rules can be extracted from
design processes, or defined manually, in both cases using
suitable algebraic foundations. This problem is, however, not
addressed in this paper.

Scenarios In the case study, the following use cases have to
be addressed:

– capturing validation rules;
– modeling and processing complex patterns model vali-
dation events;

– defining quick fix generation rules in terms of design
space exploration;

– integration of the components.

Domainmetamodels Due to space considerations,wepresent
a limited fragment of the metamodel3. The description of the
domain (Fig. 4) is adopted from [1].

The simplified CPS source model (Fig. 4a) contains
HostInstances andApplicationInstances, typedbyHostTypes
andApplicationTypes, respectively.ApplicationInstances are
allocated to a HostInstance. In the Deployment model
(Fig. 4b), DeploymentHosts and DeploymentApplications
are derived from their CPS model counterparts, respectively,
and the hosts are associated with the hosted applications.
HostInstances provide CPU, RAM and HDD capabilities to
the CPS. These parameters are characterized by an available
and a total amount. A typical validation rule would check
whether the available amount of a given resource type is
lower than the total.

4 Language structure and semantics

This chapter summarizes the syntax and the formal semantics
of our event processing language. The language is highly
motivated by the currently available ones in the CEP domain
(in particular [21]), but with more focus on change events of
engineering models.

4.1 Syntax

The language is built up from a finite set of

– atomic event patterns A referring to elementary events
(observed on an event stream), and

– complex event patterns C defining complex event
sequences constructed by

– complex event operators O: fol, or, and, mult, ¬
(negative application condition—NAC), win.

Definition 1 Every atomic event pattern a ∈ A is a pair
(t, Φ) where t is an event type and Φ is a list of formal
parameters.

A query event pattern (QEP) is a special subtype of
atomic event patterns, which represents a change events of
continuously evaluated query results over a model. A query
event pattern, therefore, extends the definition of the atomic
event pattern: aq ∈ Aq ⊆ A is a 4-tuple (t, Φ, tq , tch), where
tq is the unique type (name) of the query and tch is the type
of the change, with tch ∈ {Appear, Disappear}. ��
Definition 2 A complex event pattern c ∈ C is defined as
(t, Φ, Body) where t is a (unique) type of the event, Φ is a

3 The detailed description of the domains with advanced scenar-
ios and sources is available from https://github.com/IncQueryLabs/
incquery-examples-cps.
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Fig. 4 Source and target domain models. a Hosts and applications of the CPS. b Deployed hosts and applications

list of formal parameters and Body is inductively defined as
follows:

– Body := a. Atomic event pattern a = (t, Φ) implies a
complex event pattern c = (t, Φ,∅) with corresponding
parameters; or

– Body := op(c1, c2). c1 and c2 are complex event pat-
terns then op(c1, c2) is a complex event pattern where
op is a complex event operator from the set O =
{fol, or, and, mult, win, ¬}. ��

The latter definition can easily be extended to allow opera-
tions for a sequence of complex event types (instead of binary
complex event operators), but we restrict the notations of the
paper to binary operators to simplify presentation and handle
this as a syntactic sugar of our language.

4.2 Atomic Event Instances in Event Streams

Definition 3 An atomic event instance e ∈ Eσ is an observ-
able entity on some event stream σ ∈ Σ . Atomic event
instances are defined as e = (t, Ψ, τ), i.e., by their type,
list of parameter values (Ψ ) and timestamp of appearance
(τ ), respectively. We denote the different components of an
atomic event instance as e.t , e.Ψ and e.τ , respectively. ��

In the scope of the current paper, we do not distin-
guish between different event streams and process events
aggregated from all of the event streams instead. Thus,
the language of all observable atomic event instances is:
E = ⋃

Σ

Eσ .

Definition 4 En
1 denotes the sequence of observed atomic

event instances. That is, En
1 = e1, e2 . . . en , where ∀i ∈ N :

ei ∈ E . ��
Definition 5 An atomic event pattern is matched over an
event stream iff an atomic event instance with the appropri-
ate type is observed on the event stream. Formally, En

1 |�
a ∈ A iff ∃e ∈ En

1 : e.t = a.t . We also use the shorthand
notation e |� a ∈ A iff e ∈ En

1 ∧ En
1 |� a ∧ e.t = a.t . ��

Atomic event patterns can only feature output parameters,
where the parameters of an atomic event pattern match are
bound from the observed atomic event instance. Formally,
∀e ∈ En

1 , a ∈ A, e |� a : a.Φ ← e.Ψ .

Query event patterns. The atomic event instances required
to match a query event pattern originate from a model query
engine. Characteristic changes in the life cycle of a model
query match (such as appearance, update, disappearance) are
labeled and atomic event instances are generated upon these
phases.

Definition 6 A query event pattern is matched iff an atomic
event instance with the appropriate type is observed on the
event stream, and the life cycle change of the referred model
query match is in line with the one defined in the pattern.
Formally, En

1 |� aq ∈ Aq iff ∃e ∈ En
1 : e.t = aq .t ∧ e.tch =

aq .tch . ��

4.3 Semantics of Complex Event Patterns

As opposed to atomic event instances, complex event
instances cannot be directly observed on the event stream.
Instead, the latter types of events are modeled and inferred
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from the stream of atomic event instances using an appropri-
ate event algebra.

Definition 7 Match of a complex event pattern In general,
a complex event pattern is (fully) matched if and only if (i)
each of its referred sub-patterns are matched and (ii) para-
meter bindings of atomic sub-patterns can be successfully
unified [10]. Formally,

– En
1 |� c ∈ C iff ∀c′ ⊂ c : ∃E j

i ⊆ En
1 |� c′, and

– ∀φ1, φ2 ∈ ⋂

c′⊂c
Φc′ : φ1 ≡ φ2. ��

The precise and executable semantics of matching a com-
plex event pattern over an event stream is defined by

– the semantics of the complex event operator (op), used
in the pattern (Sect. 4.3.1); and

– the event processing context (Sect. 4.4).

Definition 8 Partial event pattern match An event pat-
tern is partially matched if at least one of its sub-patterns is
matched, but at least one of its sub-patterns is not matched.
This relation is denoted by |�p.

Formally,
En
1 |�p c ∈ C iff ∃c1, c2 ⊂ c :

– ∃E j
i ⊆ En

1 |� c1, but

– �E j
i ⊆ En

1 |� c2. ��

Definition 9 The timestamp of a complex event pattern
match is the timestampof the last sub-pattern beingmatched.
Formally, if En−1

1 � c, but (En−1
1 ; en) |� c, then c.τ := en .τ .

Here, (En−1
1 ; en) denotes the event en being appended to

the end of the sequence En−1
1 and ∀ei ∈ En−1

1 : ei .τ ≤ en .τ
holds. ��

4.3.1 Operator Semantics

Based on the definitions of the static structure (Sect. 4.1), we
define the operators of our event processing algebra.

Followed by: fol(c1, c2) En
1 |� fol(c1, c2) iff En

1 |�
c1 ∧ En

1 |� c2, where c1.τ < c2.τ , i.e., the pattern is
matched if and only if every sub-pattern is matched, and
in the specific order defined by the pattern.
Or:or(c1, c2) En

1 |� or(c1, c2) iff En
1 |� c1∨En

1 |� c2,
i.e., the pattern is matched if and only if one of the sub-
patterns is matched.
And:and(c1, c2) En

1 |� and(c1, c2) iff En
1 |� c1 ∧ En

1 |�
c2, i.e., the pattern is matched if and only if every sub-
pattern is matched. The and() operator is a syntactic
sugar, formally defined as the combination of the fol()

and or() operators: and(c1, c2) ≡ or(fol(c1, c2),
fol(c2, c1)).
Multiplicity: mult(c, n) ∀c ∈ C, n ∈ Z

+ : En
1 |�

mult(c, n) iff En
1 |� fol(cn1). That is, the pattern is

matched if and only if n occurrences of pattern c are
matched.
Specifically,

– the Arbitrary operator: En
1 |� mult(c, ∗) iff En

1 |�
mult(c, n), n ≥ 0;

– the At least once multiplicity operator: En
1 |�

mult(c,+) iff En
1 |� mult(c, n) ∧ n ≥ 1.

Note that the former operator also allows no occurrence
of c; hence, this operator cannot be applied on atomic
events, since it would match empty patterns.
Additionally: mult(c,+) ≡ fol(c,mult(c, ∗)).
Time window: win(fol(c1, c2),Δ,ws) Applying a
time window win of time window semantics ws and
of length Δ on the complex event pattern c intuitively
means the following. Let c1 denote the leftmost and c2
denote the rightmost sub-pattern of the pattern.Using this
notation, the following rules apply:

– En
1 |� win(fol(c1, c2),Δ,Within) iff

En
1 |� fol(c1, c2) ∧ |c1.τ − c2.τ | ≤ Δ.

– En
1 |� win(fol(c1, c2),Δ, HoldsFor) iff

En
1 |� fol(c1, c2) ∧ |c1.τ − c2.τ | ≥ Δ.

The time windowoperator is only applicable tofol con-
structions, or to those available to be expressed via such
a construct. In the current set of operators, this means the
and and the mult operators.
To efficiently handle timewindow constraints of arbitrar-
ily complex event patterns, we investigate the algebraic
axioms of the operators and we conclude a general rule
to this end.
Negative application condition (NAC): ¬c ∀c ∈ C :
En
1 |� ¬c iff En

1 � c. The distributive nature of the NAC
operator over the fol(c1, c2) and or(c1, c2) operators:

– ¬(fol(c1, c2)) ≡ or(¬c1,fol(c1,¬c1))
– ¬(or(c1, c2)) ≡ ¬(c1) ∧ ¬(c2)

Applying the NAC operator on multiplicities: ∀c ∈
C, n ∈ Z

+ : En
1 |� ¬(mult(c, n)) iff En

1 |� fol(cm1 ) ∧
m < n. That is, the pattern is matched if and only if n
occurrences of pattern c are not matched, i.e., the pattern
is matched a maximum of m = n-1 times. Consequently,

– ¬(mult(c, ∗)) is not defined, because of m < 0;
– ¬(mult(c,+)) ≡ ¬c, because of m < 1.

Applying the NAC operator to a time window opera-
tor switches the time window semantics from Within to
HoldsFor, and the other way around.
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Table 2 Algebraic axioms of the complex event operators ( / : rela-
tionship does/does not hold)

4.3.2 Interaction of Operators

Operator precedence rules divide operators into two groups
which the precedence rules are defined between. However,
there are no precedence rules defined within the groups.

Higher precedence operators are: mult, NAC, win.
Lower precedence operators are: fol, or, and.

In general, the group of operators with lower precedence
are the binary operators of the algebra, while the operators
of higher precedence are the unary ones.

Algebraic axioms [31] define logical transformation rules
between differing algebraic structures. These transforma-
tions are useful when the validity of complex event patterns
needs to be assessed. Table 2 summarizes the characteristic
properties of the binary operators of our event algebra. The
propositions and proofs are available in “Appendix 1.”

Axioms for the time window operator. Although all the bin-
ary operators are associative (in both directions) by nature,
to efficiently handle time window constraints, we introduce
the following convention.

Definition 10 The evaluation of the or and and com-
plex event operators follows a left-associative convention,
while the evaluation of the fol operator follows a right-
associative convention. That is, the following rewriting rules
(denoted by �) apply,

– or(c1, c2, c3) � or(or(c1, c2), c3);
– and(c1, c2, c3) � and(and(c1, c2), c3); but
– fol(c1, c2, c3) � fol(c1,fol(c2, c3)). ��

Making the fol operator right-associative is motivated
by the following proposition.

Proposition 1 Assuming right-associativity, win(fol
(c1, c2, c3),Δ,ws) can be rewritten into:fol(c1, c2, c3) ∧
win(fol(c1, c3),Δ,ws). ��

This concludes that evaluating time window constraints
requires only comparing the timestamps of the rightmost and
leftmost sub-patterns.

Proof Following Definition 9, as the patterns are evaluated
from right to left, it is always the rightmost sub-pattern that
determines the timestamp of the complex event pattern. ��

Fig. 5 Matches of the fol(a1, a2) pattern under different event con-
texts, given a sequence of observed event instances a1, a1, a1, a2, a3, a2

4.4 Event Processing Contexts

Observed event instances might contribute to multiple com-
plex event pattern instances. Specifying which partial event
pattern match(es) an observed atomic event instance is
allowed to contribute to, is achieved by using event process-
ing contexts [21], or event contexts, in short. Cugola et al.
[24] refer to the concept as consumption rules.

The event context is a global parameter to the specific
event processing task.

Figure 5 shows the three-event processing contexts dis-
cussed in this paper. The figure shows how event processing
contexts influence the evaluation of the fol(a1, a2) pattern
over an example stream of events, consisting of the following
event instances: a1, a1, a1, a2, a3, a2. As the figure shows,
different event contexts result in differently matched event
pattern instances.

To formalize event processing contexts, we use the con-
cept of partial event match sets.

Definition 11 Set of partial event pattern matches Let P
denote the set of partial event pattern matches of any defined
complex event pattern c ∈ C; and Pc ⊆ P denote the set
of partial event pattern matches of a complex event pattern
c ∈ C, at a given point of time. (Consequently, P = ⋃

c∈C
Pc.)

Additionally, let P(e) ⊆ P and Pc(e) ⊆ Pc denote the
set of partial event pattern matches that the observed event e
can contribute to. ��

Chronicle We use the Chronicle context in accordance with
[21]. This context enables tracking arbitrary number of event
patterns and uses every atomic event instance in exactly one
event pattern. Event instances are considered in the order they
appeared, i.e., the observed event instance e is always associ-
ated with the oldest partial event pattern instance. Formally,
chronicle(P, e) : e �→ min

τstart
(P).

As Fig. 5 shows, two event pattern instances are matched
in the example using this context: a1(1) − a2(1) and
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a1(2) − a2(2), while a partial event pattern instance is still
unmatched.

Immediate In some scenarios, e.g., in our gesture recognition
case study in Sect. 7, noise on the event stream(s) is required
to be taken into account. By noise with respect to a complex
event pattern, we generally mean an observed event instance
not contributing to the specific complex event pattern. For-
mally, event e is considered as noise with respect to complex
event pattern c ∈ C iff Pc(e) ≡ ∅.

The Immediate context extends the definition of the
Chronicle context by defining how to deal with noise. In
case of a noise event, every partial event pattern is disposed
by definition. Formally, immediate(P, e) : Pc(e) ≡ ∅ ⇒
P := ∅.

In the example in Fig. 5, this results in two partial event
pattern instances being disposed upon observing a3, as it does
not contribute to the pattern itself. The example also explains
the naming, as partially matched event patterns are required
to evolve immediately after an event is observed on the event
stream.

Strict immediate The Strict immediate context restricts the
Immediate context by allowing only one match to be tracked
at the same time per complex event pattern. Formally,
strict (c) : |Pc| ≤ 1.

This restriction leads to more aggressive noise filtering.
In the example, the first instance of a1 starts a partial com-
plex event instance, and since this is the only one allowed to
be tracked in this context, the second instance of a1 cannot
contribute to any pattern instance, hence it is considered as
noise. Finally, the a1(3)− a2(1) pattern instance will match.

5 Executable Semantics

To enable the execution of the Vepl language, the event
processing algebra, its operators and logical structures are
required to be mapped to an appropriate formal represen-
tation. In the case of keeping track of partially and fully
matched phases of single event patterns, automaton-based
formalisms seem to be a natural fit. We chose a deterministic
finite automaton (DFA) [47]-based representation in which
states represent the phases of pattern matching, while tokens
represent specific event pattern matches passing through the
different phases. This concept is highlighted in Fig. 6.

In this section, we discuss the underlying DFA structure
and its extensions to support evaluating time windows and
formal parameters of event patterns.

Fig. 6 Mapping between event patterns and automata

5.1 Structure of the Underlying DFA Formalism

An automaton M is a 7-tuple (Q, q0, f, x, E, δ, T ), consist-
ing of

– a finite set of states (Q);
– an initial (start) state (q0 ∈ Q);
– a final (accept) state ( f ∈ Q);
– a trap state (x ∈ Q);
– a finite set of input event types (the alphabet) (E);
– a transition function (δ : Q × E �→ Q);
– a set of timed zones (T ).

States. The states (Q) represent the relevant phases of
detecting the complex event pattern and tokens represent the
(partial or complete) matches of complex event patterns.

Definition 12 A state q ∈ Q is said to be an intermediate
state of an automaton if the state is neither an initial nor final
nor a trap state. Formally, q /∈ {q0, f, x}. ��

The completeness of an event pattern match is determined
by the state its token is placed at. A token in the initial state
q0 represents the state where no event contributing to the
complex event pattern has been observed yet, while a token
in the final state f represents a full event pattern match. The
trap state x is a special state indicating that a complex event
pattern can never be matched, e.g., the expiration of a time
window could result in such an error. Intermediate states
represent partial phases of an event pattern match.

Language of input events. The language of input events E
follows the definition provided in Sect. 4.2.

Transition function. The transition function δ defines how
the pattern matching process can evolve from one phase to
another, i.e., proceed over states in Q. The transition function
is determined by the operator and the type of the referred
event types in the complex event pattern. The former one
determines in what structure transitions interweave states of
the automaton, while the latter information is used to define
guards for transitions. In general, every transition is typed by
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Algorithm 1 Algorithm for parameter evaluation
PROCEDURE boolean Transition.evaluateParameter(event, token, checkCondition)
1: parameterValue = event .getParameter(checkCondition.position) � The value bound in the observed event instance
2: if token.parameterTable not contains checkCondition.name then � The parameter has not been evaluated previously
3: token.parameterTable.put(checkCondition.name, parameterValue) � Record the parameter-value pair
4: return true � Report success
5: else � The parameter has been evaluated previously
6: boundValue = token.parameterTable.getParameter(checkCondition.name) � Get the previously recorded value
7: return boundValue.equals(parameterValue) � Check equivalence and report result
8: end if

exactly one atomic event type and is enabled if an instance
of that atomic event type is observed on the stream.

Transitions are also responsible for triggering the
unification-style evaluation of the formal parameters of event
patterns, as presented in Definition 7. At compilation time,
transitions are augmented with information to evaluate para-
meter bindings, which is a map of string-integer pairs, each
pair referring to

– the symbolic name of the parameter in the complex event
pattern and

– the position of that symbolic parameter in the given
atomic sub-pattern, respectively.

The parameter evaluation behaves like an additional guard in
addition to the atomic event type the transition is typed with.
Once the type is successfully matched and a token attempts
to transition, the parameters are evaluated, as shown in Algo-
rithm 1.

1. First, the value bound to the parameter in the current event
instance is obtained (Line 1).

2. If the parameter table of the token does not contain previ-
ously bound values to the given symbolic name (Line 2),
the equality criteria will not be violated. Therefore, the
value is bound to the symbolic name for the first time and
it is persisted in the parameter table of the token (Line 3).

3. If the parameter table contains a record with the given
symbolic name (Line 5), its previously bound value is
obtained (Line 6), compared to the value bound in the
observed event instance and the result is reported (Line
7).

Negative transitions typed by an event pattern, represent
NAC expressions and are evaluated by the rule defined in
Section 4.3.1. That is, ∀En

1 |� ¬a iff En
1 � a, i.e., the nega-

tive transition guarded by an atomic event type is fired iff the
last-observed atomic event instance has a mismatching type.

Timed zones. The timed zones (T ) represent time window
constraints (win) on the level of the automaton. Formally,
a timed zone is defined as a 4-tuple (Qt , Qt

in, Q
t
out , tw),

consisting of

– the states within the timed zone Qt ;
– the in-states of the timed zone Qt

in ;
– the out-states of the timed zone Qt

out ;
– the length of the timed zone tw.

States of the automaton can be associated with multiple
timed zones. As tokens are passed across a timed zone, first
they enter the zone by marking one of the in-states (Qt

in) and
then leave the zone by marking one of the out-states (Qt

out ).
Timestamps of both these events are recorded by the token.
Upon attempting to leave a timed zone, the two timestamps
are compared to tw as defined inSect. 4.3.1. If the appropriate
time window condition holds, the token can leave the timed
zone; otherwise, it is placed into the trap state (x ∈ Q).

Figure 7 shows the patterns of mapping the operators of
the event algebra on automaton structures. It can be con-
cluded that every pattern generates a structure being both
deterministic and finite; therefore, every automaton will be a
DFA indeed.

Steps and traces of an automaton. The execution of an
automaton is defined as a sequences of steps called traces.

Definition 13 Marking of an automatonTheμ : Q(M) �→
Z state multiset captures a configuration of automaton M ,
where Z denotes the set of tokens z assigned to the set of set
states Q. μ(q) denotes the current marking of state q ∈ Q.
Zμ(q) denotes the set of tokens assigned to state q ∈ Q in
the configuration defined by μ. ��
Definition 14 Step of an automatonAstep of an automaton
M is defined as ξ : (μ0, e ∈ E) �→ μ1, where

– ∃q1, q2 ∈ Q, q1 �= q2, z ∈ Z : z ∈ Zμ0(q1) ∧ z ∈
Zμ1(q2), and

– ∀q ∈ Q, z′ ∈ Z\z : z′ ∈ Zμ0(q) ⇒ z′ ∈ Zμ1(q).

That is, a step captures a change in the marking of the
automaton triggered by an observed atomic event instance;
the change involves exactly one token being assigned to a
new state, but all the other tokens being left intact. ��
Definition 15 Trace of an automaton By a trace t of an
automaton M , we mean the ordered sequence of steps: t =
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Fig. 7 Patterns of mapping complex event operators to DFA. (a) fol(a1, a2). (b) or(a1, a2). (c) not(a). (d) mult(a, ∗). (e) mult(a,+). (f)
win(c, tw)

{ξ1, ξ2 . . . ξn}. We use the notation (M, En
1 ) �

t
q ∈ Q to

express that given an automaton M and an input event stream
En
1 , μ(q) can be inferred through a trace t , and the t begins

with a step ξ1 moving a token from the initial state. ��

5.2 Completeness and Soundness of the Mapping

Below we show that the proposed DFA-based execution
model, i.e., the mapping from the structures of the Vepl lan-
guage to DFAs is complete and sound with respect to its
semantics defined in Sect. 4.

Definition 16 Completeness and soundness of a mapping
Let M = map(c ∈ C) be an automaton identifying the
complex event c and f ∈ Q denote the final state of the
automaton. Then

– a mapping M = map(c ∈ C) is complete if: En
1 |� c ⇒

∃ f ∈ Q, t : (M, En
1 ) �

t
f ; and

– a mapping M = map(c ∈ C) is sound if: ∃ f ∈ Q, t :
(M, En

1 ) �
t
f ⇒ En

1 |� c. ��

Proposition 2 The mapping M = map(c ∈ C) is always
complete. ��
Proof Let E j

i ⊆ En
1 = ei …e j be the timestamp-ordered

sequence of atomic event instances constituting the complex
event pattern match. That is, {ei …e j } |� c.

Due to the construction algorithm of the automaton M ,
∀ei ∃q1, q2 ∈ Q : δ(q1, ei ) �→ q2, where for the state pair
(q1, q2) ∈ t holds always. Specifically, in the sub-cases of
complex event operators defined in Sect. 4.3.1 and the map-
ping patterns in Fig. 7:

– fol(ei−1, ei ): ∃q0, q1, q2 ∈ Q :
– δ(q0, ei−1) �→ q1 ∧
– δ(q1, ei ) �→ q2;

– or(ei−1, ei ): ∃q0, q1 ∈ Q :
– δ(q0, ei−1) �→ q1 ∨
– δ(q0, ei ) �→ q1;

– and(ei−1, ei ): ∃q0, q1, q ′
1, q2 ∈ Q :

– δ(q0, ei−1) �→ q1 ∧ δ(q1, ei ) �→ q2 ∨
– δ(q0, ei ) �→ q ′

1 ∧ δ(q ′
1, ei−1) �→ q2;

– ¬(ei ): ∃q0, q1, x ∈ Q :
– δ(q0, ei ) �→ x ∧ δ(q0, E\ei ) �→ q1.

Inductively, by applying the δ transition function j − i
timeswith respect to the E j

i input stream, the trace leads from
q0 to f . Consequently, En

1 |� c ⇒ ∃ f ∈ Q, t : (M, En
1 ) �

t
f . ��

Proposition 3 The mapping M = map(c ∈ C) is always
sound. ��

Proof ∀{q1, q2} ⊆ t : ∃δ(q1, ei ) �→ q2, where ei ∈ E .
Depending on the structure of the sub-graph spanned by

q1 and q2:

– ∀ei , e′
i ∈ E ∃δ(q1, ei ) �→ q2 ∧ ∃δ(q1, e′

i ) �→ q2 ⇒ ei =
e′
i , i.e., there is only one transition between two states,
then the structure models e1 and hence, by appropriate
concatenation it models fol(ei−1, ei ).

– ∀ei−1, ei ∈ E, ei−1 �= ei ∃δ(q1, ei−1) �→ q2 ∧
∃δ(q1, ei ) �→ q2, i.e., there are two or more identically
directed transitions between two states, then the structure
models or(ei−1, ei ).

– ∀ei ∈ E, x ∈ Q ∃δ(q1, ei ) �→ x ∧ ∃δ(q1, E\ei ) �→
q2, i.e., there is one transition with the given event type
directing to the trap state and there is one transition with
the negation of the given event type directing to a non-trap
state, then the structure models ¬(ei ).
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By iterating through the elements of the t trace, it will
imply the series of events ei . . . e j ∈ En

1 |� c. Consequently,
∃ f ∈ Q, t : (M, En

1 ) �
t
f ⇒ En

1 |� c. ��

6 Elaboration of the Case Study

In this section, we demonstrate how streaming transforma-
tions can be defined by building upon query and transforma-
tion languages by elaborating on the case study.4 Figure 8
shows the detailed overview of the case study in accordance
with Fig. 2.

Phase 1a Atomic event instances are processed by the
CEP engine. These events reflect changes in the validity
of the observed model, originating from a query engine.

– First, model queries are defined to depict well-
formedness rules of the source model. Appear-
ance and disappearance of query matches represent
changes in the validity of the model.

– To process atomic (change) event instances, atomic
and complex event patterns are defined using the
Vepl language. Complex event patterns identify
states of the model in which intervention is required,
i.e., when a toleration limit of invalid model state is
reached.

Phase 1b When the appropriate complex event pattern
is matched, the DSE engine should be notified. This is
achieved by defining actions and associating them with
appeared matches of complex event patterns.
Phase 2a-2b As the DSE engine is notified, it queries the
model state and generates quick fixes, defining model
transformation alternatives the user can select from. The
DSE engine is configured by the appropriate objectives
and transformation rules.
Phase 3 After choosing one of the quick fixes, a model
transformation is executed on the model.

The stream of atomic validation event instances con-
stitutes the streaming model under processing. The model
transformations are drivenby complex event patterns inferred
from this stream and are executed upon the underlying source
model.

Technological choices To tackle the laborious and error-
prone efforts of tool integration,weuse theViatraplatform5

4 The complete source code is available from https://github.com/
FTSRG/viatra-cep-examples/wiki/Complex-event-driven-quick-fix-
generation.
5 https://www.eclipse.org/viatra/.

Fig. 8 Detailed overview of the reactive workflow

Fig. 9 Specification- and execution-phase interplay between various
components of the Viatra stack

for graph querying, event processing, design space explo-
ration and model transformation purposes as well.

The Viatra- CEP [27] event processing framework is
designed to efficiently support advanced modeling scenar-
ios. Its event processing DSL, the Viatra Event Processing
Language (Vepl) implements the ideas presented in Sect. 4.

As shown in Fig. 9, the CEP framework integrates with
both the Viatra- DSE design space exploration framework
[1,43] and the Viatra- MT model transformation engine
[13]. Model queries are captured using theViatra Queries
framework (formerly EMF- IncQuery) [70] in all the three
subsequent steps of CEP, DSE and MT, and are evaluated
in an incremental fashion. Additionally, the ViatraEvent-
driven Virtual Machine (EVM) [13] serves as the unified
and reactive environment governing the various phases of
execution.

6.1 Model Queries for Structural Constraints

Model queries capture structural constraints of a model.
Fig. 10 shows an example of a validation rule defined by
a graph pattern depicting an invalid state of the model. The
pattern is parameterizedwith a HostInstance and checks
whether its availableCpu property is greater than the
totalCpu, which is clearly a validity violation, as the for-
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Fig. 10 Validation rule detecting when the availableCpu is greater than the totalCpu of a HostInstance

Fig. 11 Event patterns and a rule associating the quick fix generation with the match of the complex event pattern

mer property can never be greater than the latter one on the
same HostInstance.

The query is augmented with information from the Vali-
dation framework [51] of the Viatra Queries framework.
This information is introduced by the @Constraint anno-
tation and is parameterized by a reference to the sourcemodel
object (host), a validation message and the severity of the
issue. (error, in this case.)

The framework allows defining violation listeners for sin-
gle validation rules. Violation listeners are updated on every
state change of the related violation rule and facilitate retriev-
ing validation information at run-time. We use this facility
to generate atomic event instances, wrap violation updates
into these events and subsequently, publish them on an event
stream.

6.2 Defining Atomic and Complex Events

In the next step, atomic and complex event patterns are
defined. As shown in Fig. 11, two atomic event pat-
terns are defined to depict events of the underlying model
being in an invalid and in a valid state, respectively. An
invalidModel event is generated if a previously valid
model becomes invalid. The validModel atomic event
depicts the opposite direction.

The two atomic event patterns also define a
sourceElement parameter, depicting the model element
associated with the appearance and disappearance of the vio-
lation.

In this solution, an adapter between the Validation frame-
work and the CEP engine generates the atomic events on

the changes of the validation query matches. As an alterna-
tive, query event patterns could have been defined with the
appropriate validation query references. Both alternatives are
equivalently suitable to process the validation information.
We chose the former solution to rely on the Validation frame-
work instead of relying on the observed model directly and
hence separate the concerns.

In the next step, atomic event patterns are combined into
a complex event pattern. In Fig. 11, the definition part
of the tolerationRange complex event pattern contains
the definition of the pattern, i.e., what level of invalidity can
be tolerated before the DSE engine gets notified to generate
quickfixes. In this specific example, the tolerance threshold is
hit after three invalidModel events from the same source
are observed after each other. The src formal parameter is
a unification directive among the atomic event patterns as
defined in Definition 7. The {3} directive is a multiplicity
operator (Sect. 4.3.1) applied on the atomic event patterns.

To enable reacting on the complex event pattern, the
toleranceLimitReached rule is defined, featuring an
executable action (defined in the Xbase language [33])
which invokes the appropriate method of the DSE engine.

6.3 Quick Fix Generation by Design Space Exploration

Quick fixes are generated by a DSE process. This process
is configured by (i) objectives to define the desired states of
a model a potential quick fix should make reachable; and
(ii) transformation rules to define how a model can be trans-
formed.
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Fig. 12 DSE objective and transformation rule reusing the previously defined Viatra Queries patterns

In this case study, we use only one objective: the model
of the CPS should be valid. As shown in Fig. 12, the
Viatra- DSE framework supports capturing this objective
by reusing the Viatra Queries graph patterns previously
defined for validation purposes in a ModelQueriesHardOb-
jective. The name suggests that the objective is hard, i.e.,
it must be satisfied by every potential quick fix candi-
date. (On the other hand, soft objectives serve as heuristics
but are not guaranteed to be satisfied in every case.) The
ModelQueryType.NO_MATCH directive suggests that
the objective is satisfied if the referred model query

(AvailableGreaterThanTotalCpu, as defined in
Figure 10) has no matches at all.

Transformation rules are defined by a left-hand side (LHS)
precondition and an action. The former one is again an Via-
tra Queries graph pattern reference, while the latter one is
captured by Java code.

6.4 Execution of the Case Study

Figure 13 shows an example execution of the case study (in
accordance with Fig. 8).

Phase 1 An instance of theHostInstance type is manipu-
lated by the user, so that its availableCpu (10) is greater
than its totalCpu (8). The Validation framework evalu-
ates the well-formedness query in Fig. 10 and since a
new match of the query is found, an invalidModel event
(Fig. 11) is published on the event stream, and subse-
quently processed by the CEP engine in Step 1a.
Phase 2 Themodel is further modified, but the validation
issue still persists and therefore, after every modifica-
tion an additional invalidModel event is published. After
observing the third event of this type, the tolerationRange
complex event pattern is matched and the action defined
in the toleranceLimitReached rule is executed in Step
1b. Consequently, the DSE engine is notified to generate
quick fixes.
Phase 3 The DSE engine first reads the current state of
the model in Step 2a and generates the quick fixes in
Step 2b. Two quick fixes are generated and provided to
the user: decreasing the number of available CPUs to the
number of the total CPUs (Fig. 12), or the other way

around. In this example scenario, the user selects former
option.
Phase 4 After selecting the quick fix decreasing the
number of availableCPUs, themodel transformation exe-
cuting this action is passed to the model transformation
engine, which applies the transformation on the source
model inStep 3. Subsequently, the instance of theHostIn-
stance type is valid again.

The workflow features multiple reactive elements. For
example, in Step 1b the action notifying the DSE engine
is executed as a response to a matched event pattern. Simi-
larly, applying a selected quick fix in Step 3 is also carried
out in a reactive fashion, as a response to the choice of the
user. To support this kind of reactive behavior, the EVM
(Event-driven Virtual Machine) [13] reactive rule engine is
used. Configurations to the components in the case study
(validation, CEP, DSE, MT) map to executable EVM pro-
grams which are then executed based on the appropriate
triggers.

This uniformexecutionmodel facilitates easier integration
of the components as it reduces the problem of interop-
erability both in terms of data and control and facilitates
process-level integration [8,72].

6.5 Discussion

To assess the reduction of complexity in event patterns,
enabled by using compound changes as atomic events, i.e.,
by using graph pattern matching as an input to complex
event processing, we calculate the number of required event
patterns for the case study in a theoretical complex event
processing architecture without a graph pattern matcher
(Fig. 14).

To observe relevant changes in the validity of the model,
all seven attributes of the HostInstance type (Fig. 10) are
required to be monitored by the appropriate elementary
change events. These seven elementary/atomic events are
later combined into a complex event pattern equivalent to
the one in Fig. 11, while the invalid/valid state changes of the
model have to be reconstructed based on elementary model
changes.
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Fig. 13 Example execution of the case study

Fig. 14 Compared architectures: a standalone CEP engine and one
combined with a graph pattern matcher

The main challenge here is to identify the combinations
that require triggering theDSEengine. The feasibility of such
an approach is questionable even in a simple example like
the one discussed here. The key advantage of our approach
is the shifting of complexity toward a graph pattern matcher
that is capable to identify relevant compound model changes
efficiently, and therefore, enables less efforts on the event
modeling side.

The reduced number of event patterns is advantageous
from a performance point of view as well, since the size of
the automata (i.e., the number of its nodes and transitions)
grows linearly alongwith the atomic event patterns employed
in a complex event pattern.

7 Evaluation Over Live Models

In this section, we present a case study and use it to assess
the usability and the performance limits of theViatra- CEP
framework. This case study carries two important differences
as opposed to the running example (Sect. 3). First, this case
study features a materialized, finite but rapidly evolving live
model, instead of a slowly changing infinite streamingmodel.
The live model is intended to capture the prevailing state of a
sensor system at run-time. Second, direct change events from
the underlying model are processed in this case, instead of
processing validation information. This motivates the usage
of query result change event patterns (Sect. 4.2), instead of
atomic event patterns, as the former ones facilitate automated
integration with the query engine supervising the underlying
model.

The example is based on our preliminary work [27]; and
[26], presented earlier at EclipseCon Europe 2012, but with-
out using the framework described in this paper. This section
gives a brief overview on the solution and focuses on the
results. Relevant parts of the related source can be found in
“Appendix 2.” Our previous work [27] discusses the example
in more details.6

6 The complete source code is available from https://github.com/
FTSRG/viatra-cep-examples/wiki/Streaming-model-transformations-
over-Jnect.
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Fig. 15 Excerpt from the domain metamodel [44]

7.1 Gesture Recognition by Streaming Transformations

In the case study, a human body is observed by optical sen-
sors. The stream of data from the sensors (Microsoft Kinect
[59] in our case) carry the spatial position of the hands,wrists,
knees, etc. This stream is continuously processed and its
data are stored in a live model, technically, an EMF model
maintained via a Java-based API [44]. Every time the optical
sensors capture a new frame, the model is updated with the
appropriate spatial data. The sensors process 25 frames per
second, resulting in 25 model update transactions each sec-
ond. The complexity of the scenario arises from the frequent
changes the model undergoes. Executing model transforma-
tions on such a model poses several problems, since it would
become obsolete quickly after being loaded into thememory.
Moreover, model update transactions affect multiple model
elements.

Figure 15 shows an excerpt from the domain metamodel
[44], containing the head and the right arm. Similar meta-
model elements describe the other three limbs of the body.

We aim at recognizing a gesture in order to control a Pow-
erPoint presentation with it. On the recognized gesture, the
presentation advances to the next slide; therefore, the gesture
is referred to as the forward gesture. In [26], there is also a
backward gesture to move back to the previous slide.

As illustrated in Fig. 16, the forward gesture consists of
two postures: the forward start and the forward end. To
recognize the gesture, the series of these two postures needs
to be identified. Postures are considered as certain states of
the body, which are described with a range or interval of spa-
tial data. For example, the forward start posture is defined
by the right arm being approximately stretched to the height
of the shoulder. We determine whether the arm is stretched

by continuously measuring the angle between the upper and
lower arm and smoothing the resulting stream of spatial data
by a moving average transformation [16].

Processing a series of postures could be interpreted as a
state machine where the states represent postures and tran-
sitions are triggered if a body leaves the valid range of the
state and enters another. For instance, the body initiates the
forward start posture by first entering the posture (forward
start found), then leaving it (forward start lost) after a certain
amount of time.

7.2 Modeling and Execution

We follow the principles presented in Sect. 6. First, model
queries are defined to identify the current state of the model
and automatically publish notifications on relevant state
changes in the form of atomic event instances. Listing 18a
shows the graph pattern depicting the Forward start posture,
as presented in Listing 16a. The pattern is parameterizedwith
the spatial data of the right arm (consisting of the right hand,
the right elbow and the right shoulder); the head; and the
body the previous parts belong to. The Forward start posture
requires a stretched right arm to be detected, but the arm shall
not be held higher than head level. The pattern in Listing 18b
compares the spatial coordinates of the right hand and the
head by their y coordinate. This pattern is used as a negative
condition in the first pattern.

As opposed to the solution in Sect. 6, atomic event
instances now represent direct model changes, and not
derived validation information. Therefore, query result
change event patterns (Definition 1) are used as atomic
event patterns as they can refer toViatra Queries patterns
directly. This unique feature of our language aims to seam-
lessly integrate a language for graph patterns with a language
for event patterns.

Query result change events in Listing 19 are parameter-
ized with a Body parameter. This enables collecting atomic
events per body, i.e., to distinguish between atomic events
based on their source.

Finally, the complex event patterns and related actions
with rules are defined, as presented in Listing 20.

7.3 Execution of the Case Study Example

Figure 17 summarizes the execution steps triggered by four
consecutive snapshots of the forward gesture.

– Phase #1. The ForwardStart pattern (Listing 18a) is
found (Step 1) in the model by the query engine. This
results in a new tuple of model elements as a match set,
whose data arewrapped into an atomic event by the query
engine and passed to the event stream (Step 2). The CEP
engine processes the atomic event instance (Step 3) and
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Fig. 16 Body postures with the key context of the human body highlighted. a Forward start found. b Forward start lost. c Forward end found. d
Forward end lost

Fig. 17 Gesture phases and the execution steps triggered

updates the complex event patterns. As the ForwardGes-
ture (Listing 20a) complex event pattern is not matched
yet, this phase ends here.

– Phase #2 and #3. In the next phase,we detect that amatch
of the ForwardStart pattern is lost. The same steps are
executed as above, only this time an atomic event of type
ForwardStartLost is published on the event stream and
processed by the CEP engine. In Phase #3, a Forwar-
dEndFound atomic event is identified and placed on the
stream.

– Phase #4. The ForwardEnd pattern is lost and a For-
wardEndLost atomic event is published on the event
stream consequently. Now, there will be additional steps
triggered after Step 3. After having processed the For-

wardEndLost atomic event, the CEP engine matches the
ForwardGesture complex event pattern (Step 4) and trig-
gers the execution of the associated rule (Listing 20b) by
triggering the model transformation defined in the rule
(Step 5). TheMT engine identifies the activated transfor-
mation rule and executes it (Step 6).

7.4 Evaluation

To estimate the performance and scalability of our tool, we
had to design a semi-synthetic benchmark based on the case
study. The reason for this is that Microsoft Kinect can only
detect at most two bodies, and the refresh rate is a fixed 25
frames per second (FPS), which is easily processed by our
CEP engine.
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7.4.1 Evaluation Setup

The core of the simulation is a previously recorded real exe-
cution sequence in which the right arm is rotated. A full arm
cycle consists of 12 positions, i.e., 12 frames. Every cycle
yields exactly one Forward gesture (Fig. 16) composed of
the sequence of 4 atomic events; and every cycle also yields
two atomic events considered as noise. This makes 6 atomic
events generated for each cycle.

Our simulations aim at stress testing our CEP prototype,
which is carried out by multiplying this sequence along a
different number of bodies in the model. This part of the
benchmark scenario is artificial in the sense that Kinect can
handle at most two bodies, but the actual positions of the
bodies remain realistic.

After starting the simulations, we primarily measure the
number of detected complex events per second. From this
rate, we calculate the effective processing rate (i.e., the the-
oretical upper limit) of the CEP engine measured in frames
per second (FPS). This value is compared to the original
FPS rate of the Kinect sensor. We continue increasing the
number of bodies up to the point when the processing rate is
greater than the recording rate.

7.4.2 Summary of Performance Results

Even though there are many approaches using Kinect for
gesture recognition and other similar tasks, these approaches
either lack the explicit live/runtime model representation
(thus prohibiting graph reasoning) or the assessed perfor-
mance aspects (such as precision, recall or lift factor used in
machine learning [48]) do not reflect runtime performance
of the engine. [30,49,75] We identified, therefore, relevant
static and dynamic metrics in order to evaluate our work, and
that from the aspect of scalability in the first place.

Table 3 summarizes our results. Rows represent the indi-
vidual measurements with respect to the increasing number
of bodies Body count. The next two columns present the
throughput of complex events (1/s) and atomic events (1/s),

respectively. The latter is calculated from the former, since
for every complex event to be detected, 6 atomic events are
observed (as discussed above). The number of atomic events
in the model denotes how many atomic events are triggered
by elementary or compound model changes per cycle, i.e.,
while the right arm makes a circle. This is the number of
atomic events required to be processed in order to achieve the
frames per second (FPS) ratio theKinect sensors work with.
Finally, processing speed summarizes the FPS of our proto-
type compared to the basic FPS value of Kinect (25). This
value is calculated as the ratio of theAtomic event throughput
and the Atomic events in the model. This ratio is acceptable
if it is above 1; otherwise, the processing rate of complex
events falls short to the data production rate of the Kinect
sensor.

As a summary, our measurements show that our approach
scales up to 24 bodies in the model (the lowest process-
ing speed above 1) at 25 × 1.009 FPS. In order to interpret
this value, we need to recall that one body consists of 20
control points each of them containing 6 attributes (see
PositionedElements in Fig. 15), from which 2 are actu-
ally modified in the simulations. Therefore, for each body,
40 elementary model changes are triggered in every frame
(assuming that the limbs are not reattached to different bod-
ies).

Handling 24 bodies at a rate of 25 × 1.009 FPS yields
approximately 24000 complex events per second, which
implies 150.000 atomic events per second. (Measurements
were carried out using a 2.9GHz CPU.) [35] defines the lin-
ear scalability limit of the Esper platform in 500.000 events
per second, which is in the same order of magnitude as
Viatra- CEP. Considering the performance optimization
of our tooling being a future work, we conclude that our
proof-of-concept implementation offers promising perfor-
mance and scalability.

It should be noted, however, that due to the rather simple
movement profile (only a few coordinates are manipulated),
the results cannot be trivially extrapolated for data streams
of real Kinect devices.

Table 3 Throughput and the
highest processing speed

Body count Complex event
throughput

Atomic event
throughput

Atomic events
in the model

Processing speed

# [1/s] [1/s] [1/cycle] [x 25 FPS]

1 69,041 414,248 6 69,041

2 63,458 380,749 12 31,729

4 66,094 396,562 24 16,523

8 41,907 251,442 48 5,238

16 35,003 210,017 96 2,188

24 24,220 145,322 144 1,009

25 20,611 123,664 150 0,824
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Table 4 Comparison of the two approaches

7.4.3 Usability Comparison

Over the course of implementing of the case study, we
also observed the usability and productivity aspects of our
approach. Table 4 summarizes our findings.

Reduced amount of source code. The Viatra- CEP frame-
work enables a model-driven approach to streaming trans-
formations compared to our previous work [26]. As code
generation is one of the traditionally emphasized highlights
of such a paradigm shift [53], our approach significantly
reduces the amount of source code required for these scenar-
ios. Compared to the previous version of this complex gesture
recognition case study, we observed a decrease of 84% in
terms of manually written lines of code (LOC) used in this
example. The LOC decreased significantly in event pattern
and rule definitions (around 78%) and in the configuration
tasks (around 67%), such as setting up the engine, wiring
event pattern and definitions. The manually written integra-
tion (glue) code between the graph pattern matcher and the
CEP engine completely disappeared, as Viatra- CEP sup-
ports integrationwithViatra Queries out-of-the-box. This
significant reduction of source code is enabled by the pow-
erful DSL, from which approximately 550 lines of code are
generated. All of these are significant software engineering
benefits.

Automated application management. Our Eclipse-based
prototype IDE hides most application life cycle manage-
ment. At design time, a rich textual editor is provided to the
user to model event patterns with support for syntax high-
light, context-sensitive assistance and validation. The IDE
also makes use of Eclipse-related facilities, such as auto-
mated projectmetadata handling, dedicated builder facilities,
and project and model creation wizards. The graph patterns
are modeled using the IDE of Viatra Queries, while type
safety over the disparate domains of graph pattern matching
and event processing is also maintained and hidden from the
user. This way, the level of our tooling is more comparable
to the industrial Drools Fusion framework while Esper still
does not provide an IDE for modeling complex events.

Table 5 Overview of the related work with respect toGraph reasoning
and Complex event processing ( / / : fully/partially/not supported;
N/A: not applicable)

8 Related Work

In this section, we give an overview of various approaches
related to our work. Table 5 presents an overview of the state
of the art considered at this place. We compared our work to
approaches and tools from the domains of Graph reasoning
and Complex event processing. As a general takeaway, our
contributions include the following:

– combined semantics for graph reasoning and complex
event processing;

– extending the streaming transformation concept to live
models and models@run.time;

– support for reactive transformations by reusing the con-
cept of change-driven transformations (CDT).

8.1 Graph Reasoning

Hartmann et al [41] present a distributed models@run.time
approach, combining ideas from reactive programming, peer-
to-peer distribution, and large- models@run.time. Similarly
to [65], models are defined as observable streams of model
fragments. Fragments are distributed between nodes in a
peer-to-peer on-demand fashion which eliminates the need
for passing around fullmodels.As compared to our approach,
the authors not employ event-based paradigms, but view run-
time models themselves as continuous streams.
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Sánchez Cuadrado and De Lara [65] present streaming
transformations working on a stream ofmodel fragments and
elements. In contrast to this technique, our approach lever-
ages derived information regarding the model in the form of
change events,which decouples the execution from the actual
model. Consequently, some of the issues discussed in by the
authors (e.g., dealing with references amongmodel elements
and transformation scheduling) are not present in our case.
We also extended the streaming transformation concept to
live and runtime models.

To efficiently capture arbitrarily compound structural
changes, we reuse the techniques of change-driven trans-
formations (CDT), previously presented by Bergmann et al.
[14], Yskout et al [76] and in [9]. As a main advantage over
these techniques, our technique allows detecting more com-
plex structures of compound changes and identify compound
changes on a higher granularity.

A formal foundation of infinite models was introduced
by Combemale et al. [22] by redefining OCL operators over
infinite collections. This is complementary problem as the
models themselves are finite in our case, but their lifeline
is infinite due to the model changes. Song et al. introduced
incremental QVT transformations [68] for runtime models.
However, these techniques primarily focus on obtaining a
faithful model of the running system, while they do not con-
sider event streams or complex event processing over live
models.

Cariou et al. [20] investigate the possibilities of adapt-
ing directly executed models for validation purposes. The
adaptation logic is event-driven, however relies on atomic
events only. By processing complex events, a more complex
adaptation logic could be achieved. The motivating example
discusses fail-stop behavior onmodel deviations. This behav-
ior can be enhanced, for example, by considering events that
handle, compensate these deviations and are acceptable if
observed in a certain time window. In our current paper, we
showed that a live model-based approach can be feasible
for detecting validation issues. Additionally, we provided a
DSE-based approach for handling validation issues in a semi-
automated way.

8.2 Complex Event Processing

By comparing the Vepl language to the state of the art of
complex event processing, some of the obvious limitations
become clear. This is due to the fact that we use CEP as a sup-
porting technique and shift the complexity toward the graph
reasoning part of our approach. As a general limitation, the
Vepl language does not feature rich aggregate functions and
sliding time windows, as the typical use cases of streaming
model transformations do not necessitate such features.

Esper [34] is an open-source event processing framework.
It has been employed in our preliminarywork [26], presented

at the EclipseCon Europe 2012. Despite being a high-end
CEP engine concerning its performance and the descriptive
power of its language, supporting the scenarios presented
in this paper is infeasible. An additional drawback of the
platform is the lack of an integrated modeling environment,
which makes integration with design/development processes
cumbersome. Esper has a rich event processing language,
which, as opposed to Vepl, allows defining aggregates and
sliding windows as well. Event contexts, however, are not
modeled explicitly, but worked around by stream manipula-
tions.

Cayuga [28] is a non-deterministic infinite automaton-
based event processing environment. Instead of a finite
alphabet, it allows arbitrary inputs and filters them according
to user-defined constraints.

The T-Rex [23] event processing middleware and its event
pattern language, TESLA, combines expressiveness and effi-
ciency. Similarly to our approach, the authors choose an
incremental event processing strategy batch-like solutions
in order to reduce latency in the processing. The pattern
language provides rich semantics to define complex event
patterns. TESLA uses consumption policies [24] to model
event contexts. Static and dynamic constraints correspond to
check expressions of Vepl, but with support for aggregates
and sliding window specifications.

Agrawal et al. [2] propose a model for event query evalu-
ation, based on the combination of a non-deterministic finite
automata and a match buffer. The latter feature is a main
difference as opposed to our formalism that allows efficient
temporal reasoning over structures such as the Kleene-plus
operator. Although in our approach, both the Kleene-star and
the Kleene-plus operators are supported, they only allow a
subset of temporal patterns to be defined. The approach also
handling active time windows, i.e., time windows that can
expire based on a physical clock, as opposed to passive time
windows whose expiration is checked upon moving an asso-
ciated token. The authors claim that even though active time
windows require more formulas to be evaluated at runtime,
they also prune non-viable traces earlier, resulting in better
performance measures.

Schultz-Møller et al. [67] address the problem of query
optimization in CEP systems, motivated by the similar sce-
narios in relational database systems. Queries are rewritten
and optimized with respect to cost models of complex event
operators, but also considering distributed execution among
multiple computation nodes. The approach shows signifi-
cant similarities to the one presented in this paper, both
in terms of the high-level modeling language and the exe-
cution semantics. Even though the modeling language is
more SQL-like (as opposed to Vepl), the set of operators
and the simple, yet expressive automaton-based formalism
enable capturing essentially the same subset of complex event
patterns.
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Allen’s interval algebra [4] is a foundational work on tem-
poral relations of intervals. Our work implements a subset
of Allen’s algebra, omitting the refined level of parallel rela-
tions, but extending the temporal timing aspect with absolute
(physical or logical) timing. The terminology and concepts
used in our work are mainly influenced by Carlson’s event
detection algebra (EDA) [21], although we augment our
approach by a domain-specific and extensible modeling lan-
guage which hides the elaborate details of the algebra from
the user. We also employ optimization steps as event patterns
are compiled into automata.

Drools Fusion [63] is an open-source complex event
processing platform. As a part of the larger JBoss/Drools
ecosystem, Drools Fusion builds on top of a business rules
management system (BRMS). Although it can be considered
as a technique similar to ours, that integrates graph reason-
ing and complex event processing, the Drools stack focuses
more on business processes. Our framework builds on amore
general model management framework, and generally tar-
gets system/software engineering scenarios. Consequently,
Drools Fusion lacks the support for several model transfor-
mation scenarios.

8.3 Other Related Approaches

Hinze and Voisard [46] introduce the EVA language as an
extensive semantic foundation for translating and unify-
ing various event description and processing languages. In
order to ensure conformance with other algebras, the lan-
guage generalizes the common event algebraic operators.
By comparing the Esper and the RTEC platforms, Elias and
Alexander [3] draw the conclusions that translating two sig-
nificantly different event languages, although not a trivial
task, is certainly possible.

Our previous work [25] presents a complex event descrip-
tion language (CEDL) which can be considered the prelim-
inary version of Vepl. Our current DSL, however, shows
significant improvements to CEDL by introducing query
result change events and executable actions (for example
model transformations). Another important difference is the
execution model of the two languages. While our previous
work was mapped and executed on top of the Esper [34]
platform, our current DSL is a part of a whole complex event
processing platform of its own.

Deshayes andMens [30] use statecharts tomodel complex
gestures and validate their approach using a similar setting
as the one presented in Sect. 7. The authors conclude that
statechart, as a high-level modeling language, reduces acci-
dental complexity. Our approach further improves this aspect
by allowing hierarchical event structures to be defined and
used as triggers for executable actions (such as model trans-
formations).

Schmidt et al. [66] conclude that RETE networks [39]
are not suitable for complex event processing as described
by Luckham [58]. To overcome its limitations, the authors
augment RETE networks with dedicated event processing
nodes which keeps the event processing and fast reasoning
concerns separated. As the Viatra- CEP framework relies
on theViatra Queries engine featuring aRETEnetwork, it
is an interesting research direction how the event processing
capabilities of Viatra- CEP can contribute to the RETE-
based pattern matching features of Viatra Queries.

Esteves Veríssimo et al. [36] discuss how conventional
non-event-driven architectures can be extended in order to
publish events for diagnostic purposes. The authors bring
motivating examples from the domain of monitoring finan-
cial information systems, which is also a typical domain for
employing streaming transformations over live models.

Apache Camel [5] is an integration framework sup-
porting complex event processing. The framework natively
supports defining and detecting event patterns using the
Esper platform. Alternatively, its typesafe DSL for Java,
Scala and Groovy provided by Camel RX [6] enables
defining and processing events as natural collection-like
structures.

9 Conclusions and Future Work

In this paper, we presented a novel approach for stream-
ing model transformations by combining change-driven
model transformations (CDT) and complex event process-
ing (CEP). Thorough algebraic foundations for the required
event processing language have been provided along with
a prototype implementation, the Viatra Event Processing
Language (Vepl). The static structure, the operator seman-
tics and the execution semantics have been formally defined
and the completeness and soundness of the execution has
been proved.

We also presented an advanced MDE scenario in which
the underlying model cannot be materialized and is available
as an infinite stream of model elements (Sect. 3), carry-
ing well-formedness information about a domain instance
model. As opposed to the case study in Sect. 7, the complex-
ity of the problem does not arise from a rapidly changing live
model, but due to integration scenarios between different ele-
ments of the heterogeneous workflow. It has been shown that
the greater Viatra framework provides easy data-, control-
and workflow-integration facilities [8] due to the common
runtime environment, EVM. The modeling process is also
enhanced by the Viatra Queries framework, as compo-
nents of the Viatra framework can reuse shared libraries of
model queries for various objectives (such as, defining query
event patterns, or transformation rules for the design space
exploration process).
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Future work As general future work, we plan to apply our
framework in various domains, as we find this the key
to improve the Vepl language in a useful and reasonable
way. Smart cyber-physical systems in open and dynami-
cally changing environments give rise to modeling problems
similar to those discussed in this paper. [29] Models under-
going rapid changes and infinite non-materializable models
are typical in this domain and advanced techniques with
proper theoretical foundations and tooling are required to
address the related modeling scenarios. These systems also
motivate various distributed event processing scenarios. We
plan to extend our framework in this direction, with spe-
cial focus on settings featuring computationally constrained
event processing resources, as presented in our works [62]
and [11]. The approach of Schultz-Møller et al. [67] gives
a feasible starting point because of the significant similari-
ties with our approach in terms of event representation and
execution semantics.

We plan to further investigate the execution formalisms
suitable for event processing. Apart from the widely used
DFA- and NFA-based approaches, DEVS [71] can be con-
sidered as an alternative, because of its explicit timing
semantics. Enhanced RETE algorithms [66] can serve as
models for complex event-based reactive execution.We envi-
sion a hybrid execution formalism which allows choosing
the most suitable representation based on the given event
processing problem during compilation time.

As mentioned in Sect. 3, model inconsistency tolerance
rules (in our case depicted by complex event patterns) can be
typically extracted from design processes and inter-model
dependency models. Due to their typically inter-domain
nature, model inconsistencies are hard to characterize and
even harder to tackle in an efficient automated way. [45]
We foresee inconsistency tolerance as a key feature to an
efficient andwell-scalable inconsistencymanagement frame-
work. Our ongoing work focuses on the formalization of
an underlying consistency algebra which the tolerance rules
conform to and which facilitates the automated extraction of
such rules.

As a primary direction for the more technical future work,
we plan several enhancements to the tooling, for example a
visual debugger for observing the runtime behavior of event
patterns at run-time. The thorough performance assessment
of the framework is an ongoing work for which we use the
Linear Road benchmark [7]. We plan to address the scal-
ability of our tool by investigating alternatives for make it
partitioned [64] and distributed [52] [69].
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Appendices

Appendix 1: Propositions and Proofs

Associativity of Vepl Operators

Proposition 4 Associativity of the binary operators All
the binary operators of the algebra are associative by defin-
ition. Formally:

– En
1 |� fol(c1, c2, c3) ⇔ En

1 |� fol(fol(c1, c2), c3) ⇔
En
1 |� fol(c1,fol(c2, c3)).

– En
1 |� or(c1, c2, c3) ⇔ En

1 |� or(or(c1, c2), c3) ⇔
En
1 |� or(c1,or(c2, c3)).

– En
1 |� and(c1, c2, c3) ⇔ En

1 |� and(and(c1, c2), c3) ⇔
En
1 |� and(c1,and(c2, c3)). ��

Proof Associativity of thefoloperator En
1 |� fol(c1, c2, c3)

iff En
1 |� c1 ∧ En

1 |� c2 ∧ En
1 |� c3, and c1.τ ≤ c2.τ ≤ c3.τ .

– En
1 |� c1 ∧ En

1 |� c2 and c1.τ ≤ c2.τ iff En
1 |�

fol(c1, c2) and fol(c1, c2).τ = c2.τ (Due to Defini-
tion 9.)

– En
1 |� c2 ∧ En

1 |� c3 and c2.τ ≤ c3.τ iff En
1 |�

fol(c2, c3) and fol(c2, c3).τ = c3.τ (Due to Defini-
tion 9.)

Consequences:

– En
1 |� fol(c1, c2) ∧ En

1 |� c3) iff En
1 |� fol(fol

(c1, c2), c3)
– En

1 |� fol(c2, c3) ∧ En
1 |� c1) iff En

1 |� fol(c1,fol
(c2, c3)) ��

Proof Associativity of the or operator En
1 |� or(c1, c2, c3)

iff En
1 |� c1 ∨ En

1 |� c2 ∨ En
1 |� c3.

En
1 |� c1 ⇒ or(c1,or(c2, c3)) immediately with-

out evaluating the right-side operand; and En
1 |� c1 ⇒

or(or(c1, c2), c3) by evaluating the left-side operand.
En
1 |� c2 ⇒ or(c1,or(c2, c3)) by evaluating the right-

side operand; and En
1 |� c1 ⇒ or(or(c1, c2), c3) by

evaluating the left-side operand.
En
1 |� c3 ⇒ or(c1,or(c2, c3)) immediately with-

out evaluating the left-side operand; and En
1 |� c1 ⇒

or(or(c1, c2), c3) by evaluating the right-side operand. ��
Proof Associativity of the and operator En

1 |� and
(c1, c2, c3) iff En

1 |� c1 ∧ En
1 |� c2 ∧ En

1 |� c3.

– En
1 |� c1 ∧ En

1 |� c2 ∧ En
1 |� c3 ⇒

En
1 |� and(c1, c2) ∧ En

1 |� c3 ⇒ En
1 |�

and(and(c1, c2), c3).
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– En
1 |� c1 ∧ En

1 |� c2 ∧ En
1 |� c3 ⇒ En

1 |�
c1 ∧ and(c2, c3) ⇒ En

1 |� and(c1,and(c2, c3)). ��

Commutativity of Vepl Operators

Proposition 5 Commutativity of the binary operators
Operator fol is not commutative, while or and and are
commutative. Formally:

– En
1 |� or(c1, c2) ⇔ En

1 |� or(c2, c1).
– En

1 |� and(c1, c2) ⇔ En
1 |� and(c2, c1). ��

Proof Non-commutativity of the fol operator En
1 |�

fol(c1, c2) iff En
1 � fol(c2, c1), because of the order pre-

serving property of the operator. ��
Proof Commutativity of the or operator En

1 |� or(c1, c2)
iff either c1 or c2 is matched. Therefore En

1 |� or(c2, c1). ��
Proof Commutativity of theandoperator En

1 |� and(c1, c2)
iff c1 and c2 are matched. Due to the not order preserv-
ing nature of the operator, it can be also stated that En

1 |�
and(c2, c1). ��

Distributivity of Vepl Operators

Proposition 6 Distributivity of the binary operatorsOper-
ators fol and and are distributive over the or operator.
That is, both operators are both left- and right-distributive
over or. Formally:

– En
1 |� fol(c1,or(c2, c3)) ⇔ En

1 |� or(fol(c1, c2),
fol(c1, c3)).

– En
1 |� fol(or(c1, c2), c3) ⇔ En

1 |� or(fol(c1, c3),
fol(c2, c3)).

– En
1 |� and(c1,or(c2, c3)) ⇔ En

1 |� or(and(c1, c2),
and(c1, c3)).

– En
1 |� and(or(c1, c2), c3) ⇔ En

1 |� or(and(c1, c3),
and(c2, c3)). ��

To prove the proposition, both the left-distributivity and
the right-distributivity must be proved.

Proof Left-distributivity of fol over or En
1 |� fol(c1,

or(c2, c3)) iff

– En
1 |� c1, and following that, either

– En
1 |� c2, and consequently En

1 |� fol(c1, c2), or
– En

1 |� c3, and consequently En
1 |� fol(c1, c3).

Which is equivalent to En
1 |� or(fol(c1, c2),fol(c1, c3)).

��

Proof Right-distributivity of fol over or En
1 |� fol(or

(c1, c2), c3) iff either

– En
1 |� c1, or

– En
1 |� c2, and following that,

– En
1 |� c3.

This means,

– En
1 |� fol(c1, c3), or

– En
1 |� fol(c2, c3), respectively.

This is equivalent to En
1 |� or(fol(c1, c3),fol(c2, c3)).

��
Proof Left-distributivity of and over or En

1 |� or(and
(c1, c2),and(c1, c3)) iff En

1 |� or(or(fol(c1, c2),fol
(c2, c1)),or(fol(c1, c3),fol(c3, c1))), due to the defi-
nition of the and operator, and consequently, En

1 |�
or (fol (c1, c2),fol(c2, c1),fol(c1, c3),fol(c3, c1)),
due to the associative nature of the or operator. This for-
mula can be satisfied iff

– En
1 |� c1, and

– En
1 |� c2 ∨ En

1 |� c3.

This is equivalent to En
1 |� and(c1,or(c2, c3)). ��

Proof Right-distributivity of and over or Due to the com-
mutative nature of the and operator (Proposition 5), the
right-distributivity is implied by the left-distributivity. ��
Proof Distributivity of the fol and and operators over or
Both the fol and and are both left- and right-distributive
over or and therefore, both operators are distributive over
or. ��

Transitivity of Vepl Operators

Proposition 7 Transitivity of the binary operators Oper-
ators fol and and are transitive, while the or operator is
not transitive. Formally:

– En
1 |� fol(c1, c2) ∧ En

1 |� fol(c2, c3) ⇒ En
1 |�

fol(c1, c3).
– En

1 |� and(c1, c2) ∧ En
1 |� and(c2, c3) ⇒ En

1 |�
and(c1, c3). ��

Proof Transitivity of the fol operator En
1 |� fol(c1, c2)

∧ En
1 |� fol(c2, c3) iff En

1 |� c1 ∧ En
1 |� c2 ∧ En

1 |�
c3, and the ordering relation is preserved. Therefore: En

1 |�
fol(c1, c3). ��
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Proof Transitivity of the and operator En
1 |� and(c1, c2)

∧ En
1 |� and(c2, c3) iff

– En
1 |� or(fol(c1, c2),fol(c2, c1)), and (1)

– En
1 |� or(fol(c2, c3),fol(c3, c2)), respectively. (2)

Both cases can be satisfied by any of the two arguments of
the or operator. Transitivity must be shown for the four
cases generated by combining the two cases of (1) and
(2). That is, for every case, En

1 |� and(c1, c3) must be
shown. (Following the notation of 1.1 being fol(c1, c2),
1.2 being fol(c2, c1), 2.1 being fol(c2, c3) and 2.2 being
fol(c3, c2), respectively.)

1.1 with 2.1 En
1 |� fol(c1, c2) ∧ En

1 |� fol(c2, c3) iff
En
1 |� c1 ∧ En

1 |� c2 ∧ En
1 |� c3, due to the transitivity

of the fol operator, which implies En
1 |� and(c1, c3).

1.2 with 2.2 For similar reasons and due the commutative
nature of the and operator, En

1 |� fol(c2, c1) ∧ En
1 |�

fol(c3, c2) iff En
1 |� and(c1, c3).

1.2 with 2.1 En
1 |� fol(c1, c2) ∧ En

1 |� fol(c3, c2)
iff c1 and c3 precede c2, but the order of the former two
is not decided, that is En

1 |� fol(c1, c3, c2) ∨ En
1 |�

fol(c3, c1, c2).
Due to the left-associativity of the fol operator (Propo-
sition 4), this can be rewritten into En

1 |� fol(fol
(c1, c3), c2) ∨ En

1 |� fol(fol(c3, c1), c2), ormore for-
mally: En

1 |� or(fol(fol(c1, c3), c2),fol(

fol(c3, c1), c2)).

Due to the right-distributive property of fol over or
(Proposition 6), this yields En

1 |� fol(or
(fol(c1, c3),fol(c3, c1)), c2), which can be rewritten
as En

1 |� fol(and(c1, c3), c2), which includes En
1 |�

and(c1, c3). ��
2.1 with 2.2 Similarly, En

1 |� fol(c2, c1) ∧ En
1 |�

fol(c2, c3) iff c2 precedes c1 and c3, but the order of the
latter two is not decided, that is En

1 |� fol(c2, c1, c3)
∨ En

1 |� fol(c2, c3, c1).
Due to the right-associativity of the fol operator
(Proposition 4), this can be rewritten into En

1 |�
fol(c2,fol(c1, c3)) ∨ En

1 |� fol(c2,fol(c3, c1)),
or more formally: En

1 |� or(fol(c2,fol(c1, c3)),
fol(c2,fol(c3, c1))).
Due to the left-distributive property of fol over or
(Proposition6), this yields En

1 |� fol(c2,or(fol(c1, c3),
fol(c3, c1))), which can be rewritten as En

1 |�
fol(c2,and(c1, c3)),which includes En

1 |� and(c1, c3).
��

Proof Non-transitivity of theoroperator If En
1 |� or(c1, c2),

and En
1 |� or(c2, c3), both formulas can be satisfied by

matching the c2 pattern only, and consequently, En
1 |�

or(c1, c3) does not hold necessarily. ��

Appendix 2: Source Codes of the Gesture Recognition
Case Study

See Figs. 18, 19, 20.

Fig. 18 Viatra queries for the example in Sect. 7. a ForwardStart posture. b rightHandAboveHead

Fig. 19 Viatra- CEP patterns reusing the queries of Fig. 18. a ForwardStartFound event. b ForwardStartLost event
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Fig. 20 Complex event pattern as a trigger for a transformation rule. a ForwardGesture complex event pattern. b A streaming transformation rule
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